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Abstract. For patients with mild cognitive impairment (MCI), the likelihood of progression to probable Alzheimer’s disease
(AD) is important not only for individual patient care, but also for the identification of participants in clinical trial, so as to
provide early interventions. Biomarkers based on various neuroimaging modalities could offer complementary information
regarding different aspects of disease progression. The current study adopted a weighted multi-modality sparse representation-
based classification method to combine data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, from
three imaging modalities: Volumetric magnetic resonance imaging (MRI), fluorodeoxyglucose (FDG) positron emission
tomography (PET), and florbetapir PET. We included 117 normal controls (NC) and 110 MCI patients, 27 of whom progressed
to AD within 36 months (pMCI), while the remaining 83 remained stable (sMCI) over the same time period. Modality-specific
biomarkers were identified to distinguish MCI from NC and to predict pMCI among MCI. These included the hippocampus,
amygdala, middle temporal and inferior temporal regions for MRI, the posterior cingulum, precentral, and postcentral regions
for FDG-PET, and the hippocampus, amygdala, and putamen for florbetapir PET. Results indicated that FDG-PET may be a
more effective modality in discriminating MCI from NC and in predicting pMCI than florbetapir PET and MRI. Combining
modality-specific sensitive biomarkers from the three modalities boosted the discrimination accuracy of MCI from NC
(76.7%) and the prediction accuracy of pMCI (82.5%) when compared with the best single-modality results (73.6% for MCI
and 75.6% for pMCI with FDG-PET).
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INTRODUCTION

Mild cognitive impairment (MCI) has been sug-
gested as the precursor stage of Alzheimer’s disease
(AD) because of the probable conversion to AD [1, 2].
Over time, some MCI patients convert to AD (denoted
as progressive MCI, pMCI), while others remain sta-
ble or even revert to normal healthy cognitive status
(defined as stable MCI, sMCI) [3]. The accurate
prediction of MCI, especially pMCI that probably
converts to AD, is significant for the timely provision
of patient care.

Besides the criteria of the National Institute of
Neurological and Communicative Disorders and
Stroke/Alzheimer’s Disease and Related Disorders
Association (NINCDS/ADRDA) [4], biomarkers
from various neuroimaging modalities have been
increasingly suggested as of utility in predicting MCI
and pMCI [5–8]. Such biomarkers include those
obtained from volumetric magnetic resonance imag-
ing (MRI) and positron emission tomography (PET)
measuring either metabolic or pathological burden
using different radioactive tracers.

Volumetric MRI measures have been widely used
to detect the structural changes in the early stage of
AD (e.g., MCI) [9–13]. For example, Jefferson et
al. used hippocampal volume and cortical thickness
to predict MCI conversion [9]; Fan et al. consid-
ered spatial patterns of brain atrophy including the
hippocampus, medial temporal lobe, orbitofrontal,
and medial prefrontal grey matter to identify MCI
patients [10]; Zhang et al. identified regional gray
matter volumes in the hippocampus, amygdala, and
thalamus to predict the cognitive impairment of MCI
patients [11]; Willette et al. performed independent
component analysis on gray matter images and used
several independent components to diagnose MCI
[12]; Risacher et al. revealed that besides decreased
hippocampal volume being a robust biomarker to pre-
dict MCI, the medial temporal structure was also a
promising MRI marker for the same purpose [13].

Fluorodeoxyglucose PET (FDG-PET), which
measures cerebral glucose metabolism, provides sen-
sitive biomarkers for the prediction of MCI and
converters [14–16]. For instance, Mosconi et al.
reported that hypometabolism in the inferior parietal
cortex was indicative of potential MCI progression
[14]; Chen et al. revealed that the hypometabolic con-
vergence index based on FGD-PET could be applied
to distinguish those who progressed to AD from those
who did not among patients with MCI [15]; Cerami
et al. found hypometabolism in the orbitofrontal

region, anterior cingulate cortex, and temporal lobe
in patients with MCI [16].

Most recently, florbetapir PET, which measures
the accumulation of amyloid in the brain, has been
introduced to study MCI [17, 18]. For example,
Camus et al. reported that patients with MCI showed
a relatively high uptake of florbetapir in the poste-
rior cingulate cortex [17]; Rosenberg et al. found
that greater standardized uptake value ratios (SUVR)
were associated with poorer performance on all
cognitive tests; the averaged SUVR of occipital,
parietal, precuneus, temporal, and anterior cingulate
regions were correlated with cognition scores, such as
the Alzheimer’s Disease Assessment Scale-Cognitive
subscale (ADAS-Cog) [18].

The biomarkers from different neuroimaging
modalities could reflect different aspects of the early
stages of diseases. Combination of biomarkers from
different imaging modalities could offer complemen-
tary information for a given disease [19–22] and
might facilitate more accurate diagnosis or prediction
results than single-modality biomarkers [5, 23, 24].
Multiple studies have reported a combination of dif-
ferent modalities in investigating MCI. For example,
when combining MRI and cerebrospinal fluid (CSF)
data [5, 25, 26], Westman et al. achieved an accuracy
of 77.6% in classifying MCI from normal controls
(NC), which was superior to each of the single-
modality results (71.8% for MRI and 70.3% for
CSF). Furthermore, adopting MRI + CSF they also
predicted the conversion from MCI to AD within 36
months with an accuracy of 66.1% [5]; Regarding
MRI and FDG-PET [21–23], Liu et al. combined
these modalities in discriminating MCI from NC
and achieved better performance than using single-
modality biomarkers [23]; When combining MRI,
CSF, and FDG-PET [24, 27], Zhang et al. discrim-
inated MCI from NC with an accuracy of 76.4%,
which was again superior to the single-modality
results (72.0% for MRI, 71.4% for CSF, and 71.6%
for FDG-PET) [24].

In this study, we explored the contribution of differ-
ent neuroimaging modalities in their predictive power
and characterized the sensitive biomarkers from each
modality, so as to conveniently and effectively pre-
dict MCI/pMCI. We used data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database
encompassing three modalities: MRI, FDG-PET, and
florbetapir PET. A multi-modal algorithm based on
sparse representation-based classification (wmSRC)
[28] was applied to study the baseline differences
between MCI and NC and between pMCI (who
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converted to AD within 36 months) and sMCI
(who did not convert to AD within 36 months).
The experimental results indicated that FDG-PET
may contribute more to the accurate prediction of
MCI/pMCI than florbetapir PET when using a set
of brain regions as features. Furthermore, the results
also suggested that combining features from MRI,
FDG-PET, and florbetapir PET increases the accu-
racy of discriminating MCI from pMCI, compared
with using features from a single-modality; a small
set of modality-specific sensitive biomarkers were
identified for effectively predicting MCI/pMCI.

MATERIALS AND METHODS

Participants

Data used in the preparation of this article
were obtained from the ADNI database (http://adni.
loni.usc.edu). The ADNI was launched in 2003 as a
public-private partnership, led by principal investiga-
tor Michael W. Weiner. The primary goal of ADNI
has been to test whether serial MRI, PET, other bio-
logical markers, and clinical and neuropsychological
assessments can be combined to measure the pro-
gression of MCI and early AD. The determination of
sensitive and specific markers for very early AD pro-
gression is intended to aid researchers and clinicians
in developing new treatments and monitoring their
effectiveness and lessening the time and cost of clin-
ical trials. ADNI is the result of the efforts of many
co-investigators from a broad range of academic
institutions and private corporations, and subjects
have been recruited from over 50 sites across the
United States and Canada. The initial goal of ADNI
was to recruit 800 adults, aged 55 to 90 years, to
participate in the study (approximately 200 cogni-
tively normal older individuals to be followed for
3 years, 400 people with MCI to be followed for 3
years, and 200 people with early AD to be followed
for 2 years). The research protocol was approved
by the institutional review board of each participat-
ing site and written informed consent was obtained
from each participant. For up-to-date information, see
http://www.adni-info.org.

Three imaging modalities were investigated,
namely MRI, FDG-PET, and florbetapir PET, and
a total of 227 subjects were included, consisting of
110 patients with MCI (27 cases of pMCI, which
converted to AD within 36 months; and 83 cases of
sMCI, which remained stable during the same time
interval, or the participant left the study) and 117 NC

Table 1
The clinical and demographic characteristics of the subjects that
included in this study, the p-value is obtained by one-way ANOVA

over the pMCI, sMCI, and NC groups

pMCI sMCI NC p-value

Gender 14M/13F 45M/38F 62M/55F 0.97
Age 74.0 ± 7.6 75.7 ± 7.9 75.4 ± 7.0 0.57
MMSE 26.5 ± 1.9 27.7 ± 1.8 28.9 ± 1.3 1.48e-12
CDR 0.5 ± 0.0 0.5 ± 0.0 0.0 ± 0.0 <1e-100

pMCI, progressive mild cognitive impairment; sMCI, stable mild
cognitive impairment; NC, normal control; M, male, F, female;
MMSE, Mini-Mental State Examination; CDR, Clinical Dementia
Rating.

subjects. The subjects were between 55 and 90 years
old. The Mini-Mental State Examination (MMSE)
[29] and Clinical Dementia Rating (CDR) scores
[30] were used to assess the severity of cognitive
impairment according to ADNI protocols. General
inclusion/exclusion criteria were as follows: 1)
MCI subjects: MMSE scores between 24 and 30
(inclusive), subjective memory complaints, objective
memory loss measured by education-adjusted scores
on the Wechsler Memory Scale Logical Memory II
[31], a CDR of 0.5, absence of significant levels of
impairment in other cognitive domains, essentially
preserved activities of daily living, and an absence
of dementia; 2) NC subjects: MMSE scores between
24 and 30 (inclusive), a CDR of 0, non-depressed,
without MCI, and non-demented. The clinical and
demographic information are listed in Table 1, and
the IDs of each participant in the ADNI dataset are
shown in Supplementary Table 1.

Data preprocessing

All the MRI, FDG-PET, and florbetapir PET
data were preprocessed as follows according to
the procedures described in our previous study
[28]. The preprocessing of the volumetric MRI
data was performed via the Voxel-Based Mor-
phometry 8 (VBM8) Toolbox (http://dbm.neuro.uni-
jena.de/vbm8), which involved two main segmenta-
tion and normalization steps. First, segmentation was
performed on each MRI image to obtain the grey
matter, white matter, and cerebrospinal fluid using
adaptive maximum posterior and partial volume esti-
mation [32, 33]. Two denoising methods, namely
a spatially adaptive non-local means denoising
filter and a classical Markov random field approach,
were adopted to improve segmentation performance.
Then, the grey matter images obtained from the seg-
mentation step were used for the following analysis:

http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://www.adni-info.org
http://dbm.neuro.uni-jena.de/vbm8
http://dbm.neuro.uni-jena.de/vbm8
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A diffeomorphic anatomical registration using expo-
nential Lie algebra (DARTEL) protocol was applied
to normalize the grey matter images [34] with iter-
ative template creation and image registration, after
which the grey matter maps were normalized to the
Montreal Neurological Institute (MNI) space. The
registered grey matter maps were multiplied by Jaco-
bian determinants with only non-linear warping to
exclude individual differences in total intracranial
volume.

The FDG and florbetapir PET images of each sub-
ject were first co-registered to his/her MRI using a
rigid body transformation, and subsequently were
warped to the cohort-specific DARTEL template.
Then, the standard uptake value ratio (SUVR) was
calculated using the whole brain as the reference
region for each FDG-PET and cerebellum as the ref-
erence region for each florbetapir PET.

The normalized grey matter images from MRI,
SUVR images from FDG-PET, and SUVR images
from florbetapir PET were then used for further
analysis.

Feature extraction

After preprocessing, features needed to be ext-
racted from each modality for the further prediction
of MCI/pMCI with multi-modal and single-modality
features. According to a prior anatomical automatic
labeling (AAL) atlas [35], 90 regions of interest
(ROIs) were defined (see Supplementary Table 2).
Then, for each subject, 90 features were extracted for
each modality. Specifically, for one ROI, the mean
gray matter volume, the mean SUVR value of FDG-
PET, and the mean SUVR value of florbetapir PET
were calculated by averaging the corresponding value
of all the voxels within that ROI as one feature for
MRI, FDG-PET, and florbetapir PET, respectively.
Thus each subject (i.e., each sample) had 90 features
for each modality.

Prediction methods

Machine learning technologies such as sparse
representation-based classification (SRC) use the
given class labeling and sample information obtained
from a training dataset to label new samples [36], it
assumes that each test sample can be expressed as
a sparse linear combination of the training samples,
and class labels can be assigned via the minimum
representation residual. In our recent study, SRC
was extended to a multi-modal framework, named

Table 2
The contributions from both types of PET images (FDG-PET and

florbetapir PET) with all the 90 features from each modality

Modality MCI versus NC pMCI versus sMCI
ACC SE SP ACC SE SP
(%) (%) (%) (%) (%) (%)

florbetapir PET 70.5 67.3 73.5 63.7 64.4 63.0
FDG-PET 71.8 64.6 78.6 67.0 67.4 66.7
MRI 68.7 63.6 73.5 50.6 47.8 53.3
MRI + florbetapir 72.3 66.4 77.8 64.3 65.9 62.6

PET
MRI + FDG-PET 73.1 62.7 82.9 70.6 71.1 70.0

MCI, mild cognitive impairment; NC, normal control; pMCI,
progressive MCI; sMCI, stable MCI; ACC, classification accuracy;
SE, classification sensitivity; SP, classification specificity.

as weighted multi-modality sparse representation-
based classification (wmSRC) for multi-modal neu-
roimaging data [28]. Here, wmSRC was used to
distinguish MCI from NC and to predict pMCI among
MCI. A description of the wmSRC method and
the corresponding experimental settings are detailed
below.

Weighted multi-modality sparse
representation-based classification (wmSRC)

Suppose there are N training samples from K
classes and each sample includes M modalities.
Am = [

Am
1 , ..., Am

l
..., Am

K

] ∈ �D×N denotes the m-
th modality of the training samples, where D is the
number of features, N = N1 + ... + Nl... + NK, and

Am
l

=
[
aml

1 , ..., aml
i , ...aml

Nl

]
∈ �D×Nl consists of Nl

training samples from the m-th modality of the l-th
class. So, for a test sample y, the sparse coding can
be calculated for each modality as:

xm = arg min
∥∥xm

∥∥
1 , subject

to
∥∥Amxm − ym

∥∥
2 ≤ ε, m = 1, ..., M, (1)

where ‖.‖1 represents the standard L1 norm, ‖.‖2
represents the standard Euclidean norm, ε > 0 is the
error tolerance, ym ∈ �D is the m-th modality of the
test sample y, and xm = [

xm
1
, ..., xm

l
, ..., xm

K

] ∈ �N is
the coding coefficient, where xm

l
consists of Nl rep-

resentation coefficients that correspond to the m-th
modality of the l-th class.

Then, the residual from the m-th modality of the
l-th class can be denoted as:

rm
l

(y) = ∥∥Amxm
l

− ym
∥∥

2
, m = 1, ..., M; l

= 1, ..., K (2)
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Finally, the class label for the test sample y will be:

label (y) = arg minl

M∑
m=1

αmrm
l

(y) (3)

where αm ≥ 0 is the combining weight for the m-th

modality, and αm is constrained by
M∑

m=1
αm = 1.

Experimental settings

The convex problems in equation (1) can be effi-
ciently optimized by a number of existing packages,
such as L1-magic [37], the GPSR package [38], and
the L1-homotopy package [39]. The GPSR package
was used in this study.

Following the practices of a previous study by
Zhang et al. [24], 10-fold cross-validation was
repeated 10 times to avoid the bias generated in
the classification step, and a grid search approach
on each training set was implemented to optimize
the combining weight parameters α. For each 10-
fold cross-validation, the procedures were as follows.
First, 10 subsets were randomly equally partitioned
from the whole samples. Each time one subset was
taken as the test set and the remaining nine were
used as the training set. Then, weight selection was
performed based on the training set with another
10-fold cross validation. In particular, a grid search
approach with a range of [0, 1] at a step size of 0.1
was adopted to determine the weight parameters α

of multiple modalities at each fold. Finally, the opti-
mal weights were determined as the average of the
weights obtained by the weight-selection process.

After determining the optimal value of weights α,
the class labels for the test samples were assigned
according to equations (1), (2), and (3). The perfor-
mance of wmSRC was evaluated by calculating the
accuracy, sensitivity, and specificity for the test sam-
ples. Accuracy was the proportion of samples that
were correctly classified over all test samples; sen-
sitivity was the proportion of positive-class samples
that were correctly diagnosed; while specificity was
the proportion of negative-class samples that were
accurately identified. The final accuracy, sensitiv-
ity, and specificity were calculated by averaging the
above cross-validation results.

Feature ranking

To find a small set of effective biomarkers that
had good predictive power for MCI and pMCI, the

90 features from each modality were ranked based
on the magnitude of the type-I error from the two-
sample t-test, as described below. The feature ranking
was performed on the training set from each fold of
the 10-fold cross-validation. Specifically, for MRI,
FDG-PET, and florbetapir PET, a two-sample t-test
between MCI and NC, as well as between pMCI
and sMCI was first performed on each feature of the
training samples to obtain the corresponding discrim-
inative p-value (type-I error). Then, all 90 features
were ranked according to their p-value. These ranked
features were used for the prediction of MCI versus
pMCI.

MCI and pMCI prediction

The wmSRC method described above was adopted
here to discriminate MCI from NC and to predict
pMCI from sMCI. The prediction results were evalu-
ated by calculating the averaged accuracy, sensitivity,
and specificity from the cross-validations. Accuracy
was the proportion of MCI + NC or pMCI + sMCI that
were correctly predicted over all test samples, sensi-
tivity was the proportion of MCI or pMCI that were
correctly diagnosed, while specificity was the propor-
tion of NC or sMCI that were accurately identified.

Contributions from both types of PET images

Different types of PET images, including FDG-
PET and florbetapir PET, are always used for the
diagnosis of MCI. Do they make different contri-
butions to the prediction of MCI versus pMCI?
Answering this question is important, so as to choose
modalities that enhance predictions. In this study,
all 90 features from each modality were used in
the wmSRC method [28] for the discrimination of
MCI from NC and prediction of pMCI versus sMCI.
We used the single-modality features from FDG-
PET, florbetapir PET, and MRI, and combinations of
features from two modalities: MRI + FDG-PET and
MRI + florbetapir PET.

Sensitive biomarkers from each modality

Ninety features were extracted from each
modality (MRI, FDG-PET, and florbetapir PET)
for the prediction of MCI and pMCI. A key issue
was identifying which features were most sensi-
tive in their predictive power. Therefore, wmSRC
for three modalities (MRI + FDG-PET + florbetapir
PET) and each single-modality (MRI, FDG-PET, and
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florbetapir PET) was investigated using a different
number (from 1 to 90) of the ranked features from
each modality. Then, a small set of discriminating
features was chosen from each modality to generate
the final predictions.

RESULTS

Contribution from both types of PET images

The results from the florbetapir PET, FDG-PET,
MRI, MRI + florbetapir PET, and MRI + FDG-PET
based on all 90 features from each modality are shown
in Table 2, which illustrates the contribution of the
two PET modalities to the prediction of MCI versus
pMCI. Of the single-modality predictions, florbetapir
PET achieved an accuracy of 70.5% in predicting
MCI and 63.7% in predicting pMCI, whereas FDG-
PET achieved an accuracy of 71.8% in predicting
MCI (1.3% higher than florbetapir PET) and 67.0% in
predicting pMCI (3.3% higher than florbetapir PET).

Of the two-modality predictions, which combined
the different types of PET with MRI, the combina-
tion of MRI + florbetapir PET achieved an accuracy
of 72.3% in predicting MCI (3.6% higher than
MRI alone), whereas prediction of pMCI occurred
with an accuracy of 64.3% (13.7% higher than
MRI only). The combination of MRI + FDG-PET
achieved an accuracy of 73.1% in predicting MCI
(4.4% higher than MRI alone and 0.8% higher than
MRI + florbetapir PET) and 70.6% accuracy in pre-
dicting pMCI (20.0% higher than MRI alone and
6.3% higher than MRI + florbetapir PET).

The weights α in wmSRC that were optimized
by the grid search approach for discriminating MCI
from NC were 0.4 for MRI and 0.6 for FDG-PET
for MRI + FDG-PET, and 0.4 for MRI and 0.6 for
florbetapir PET for MRI + florbetapir PET. For dis-
criminating pMCI from sMCI, the weights α were
0.2 for MRI and 0.8 for FDG-PET for MRI + FDG-
PET, and 0.4 for MRI and 0.6 for florbetapir PET for
MRI + florbetapir PET.

Sensitive biomarkers from each modality

To choose the top few sensitive biomarkers
from each modality for the prediction of MCI and
pMCI, we investigated different number (from 1 to
90) of ranked features for multi-modal discrimina-
tions (MRI + FDG-PET + florbetapir PET) and the
single-modality discriminations (MRI, FDG-PET,
and florbetapir PET). Subsequently, a small set of

features from each modality were chosen for the final
prediction, according to their predictive power.

The results from single-modality (MRI, FDG-PET,
and florbetapir PET) and multi-modal (MRI + FDG-
PET + florbetapir PET) analyses are displayed in
Fig. 1. Figure 1a and 1b indicate that discriminat-
ing MCI from pMCI by combining features from
multiple modalities was superior to single-modality
features, and the single-modality results from FDG-
PET were superior to those of florbetapir PET along
with different number of the ranked features. In
particular, the weights α in wmSRC for MRI + FDG-
PET + florbetapir PET were optimized by a grid
search approach and finally set as 0.4, 0.3, and 0.3
for MRI, FDG-PET, and florbetapir PET, respec-
tively, for discriminating MCI from NC; and 0.1, 0.3,
and 0.6, respectively, for discriminating pMCI from
sMCI.

The multi-modal analysis achieved reasonable
accuracy for discriminating MCI from pMCI even
with a combination of only the top 6% (i.e., 6) features
from each modality (MRI, FDG-PET, and florbetapir
PET). Thus, to provide a conveniently small set of fea-
tures to effectively predict MCI and pMCI, the top 6%
of ranked features from each modality were chosen
as sensitive biomarkers to obtain the final prediction.

Table 3 lists the most sensitive 6% of biomark-
ers from each modality and Fig. 2 shows them
in the template space. Table 4 displays the
prediction results from multi-modal (MRI + FDG-
PET + florbetapir PET) and single-modality (MRI,
FDG-PET, and florbetapir PET) analyses using the
sensitive biomarkers shown in Table 3, as well as with
all 90 features. For the discrimination of MCI from
NC with the sensitive biomarkers, the multi-modal
analysis achieved an accuracy of 76.7%, which was
superior to single-modality analyses (MRI: 63.9%,
florbetapir PET: 68.7%, FDG-PET: 73.6%). With all
90 features, the multi-modal analysis achieved an
accuracy of 74.5%, which was superior to single-
modality analyses (MRI: 68.7%, florbetapir PET:
70.5%, FDG-PET: 71.8%). These results show that
when using the sensitive biomarkers, the discrimina-
tion performance for MCI versus NC was comparable
to using all 90 features. For the discrimination of
pMCI from sMCI, the combination of multi-modal
sensitive biomarkers achieved an accuracy of 82.5%,
which was superior to MRI (57.6%), florbetapir PET
(73.2%), and FDG-PET (75.6%). The combination
of all 90 multi-modal features achieved an accuracy
of 77.8%, which was superior to MRI (50.6%), flor-
betapir PET (63.7%), and FDG-PET (67.0%). These
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Fig. 1. The prediction accuracy from multi-modal (MRI + FDG-PET + florbetapir PET) and single-modality (MRI, FDG-PET, and florbetapir
PET) analyses along with different number of the ranked features. (a) MCI versus NC and (b) pMCI versus sMCI.

Table 3
The sensitive biomarkers from each modality for predicting MCI and pMCI

MCI versus NC

No. MRI FDG-PET florbetapir PET

1 left Hippocampus left Posterior Cingulum left Hippocampus
2 right Hippocampus left Angular right Hippocampus
3 left Amygdala right Posterior Cingulum right Posterior Cingulum
4 right Amygdala left Postcentral left Rectus
5 left Middle Temporal left Precentral right ParaHippocampal
6 left Inferior Temporal left Paracentral lobule left ParaHippocampal

pMCI versus sMCI

No. MRI FDG-PET florbetapir PET

1 left Calcarine left Posterior Cingulum left Amygdala
2 left Cuneus right Precentral right Amygdala
3 right Middle Temporal (Polo part) right Postcentral left Putamen
4 right Cuneus right Posterior Cingulum right Putamen
5 left Middle Temporal (Polo part) right Superior Parietal left Superior Frontal
6 left Inferior Temporal left Middle Temporal right Thalamus

MCI, mild cognitive impairment; NC, normal control; pMCI, progressive MCI; sMCI, stable MCI.

results show that discriminating pMCI from sMCI
using the sensitive biomarkers achieved better per-
formance than using all 90 features.

Table 3 and Fig. 2 show that for the prediction
of MCI, the hippocampus, amygdala, middle tempo-
ral, and inferior temporal regions may be significant
biomarkers for MRI; the posterior cingulum gyrus,
angular gyrus, precentral gyrus, postcentral gyrus,
and paracentral lobule may be important for the FDG-
PET modality; the hippocampus, posterior cingulum
gyrus, and parahippocampal region may be crucial
for the florbetapir PET modality. For the discrim-
ination of pMCI from sMCI, the middle temporal,
cuneus, and inferior temporal regions may be sig-
nificant biomarkers for the MRI modality; posterior
cingulum gyrus, precentral gyrus, postcentral gyrus,
superior parietal, and middle temporal regions may
be important for the FDG-PET modality; amygdala,
putamen, superior frontal region, and thalamus may
be crucial for the florbetapir PET modality.

DISCUSSION

In this paper, effective biomarkers for predicting
MCI conversion were constructed by combining three
modalities: MRI, FDG-PET, and florbetapir PET. The
results showed that multi-modal predictions were
superior to thosefromasingle-modality.Furthermore,
the results suggested that FDG-PET may contribute
more to the accurate prediction of MCI and pMCI than
florbetapir PET. Sensitive biomarkers for modality-
specific brain regions were identified so as to enable
effectiveandconvenientpredictionofMCIandpMCI.

FDG-PET and florbetapir PET

Two different types of PET images, which mea-
sure separately the metabolic or pathological burden
of the brain, are always employed in disease diagno-
sis [15, 17, 19]. Thus, it is interesting to explore their
contributions to predictions of MCI versus pMCI.
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Fig. 2. The sensitive biomarkers from each modality for the prediction of (a) MCI and (b) pMCI. Each color in the figure denotes one
biomarker.

Table 4
The performance for predicting MCI and pMCI with sensitive biomarkers as well as with all the 90 features

Methods Sensitive biomarkers 90 features

MCI versus NC pMCI versus sMCI MCI versus NC pMCI versus sMCI

ACC (%) SE (%) SP (%) ACC (%) SE (%) SP (%) ACC (%) SE (%) SP (%) ACC (%) SE (%) SP (%)

MRI 63.9 50.9 75.7 57.6 50.4 64.8 68.7 63.6 73.5 50.6 47.8 53.3
florbetapir PET 68.7 66.4 70.9 73.2 79.6 66.7 70.5 67.3 73.5 63.7 64.4 63.0
FDG-PET 73.6 62.7 83.8 75.6 70.0 81.1 71.8 64.6 78.6 67.0 67.4 66.7
MRI+florbetapir PET + FDG-PET 76.7 63.6 89.7 82.5 81.5 83.5 74.5 66.4 82.1 77.8 74.1 81.5

MCI, mild cognitive impairment; NC, normal control; pMCI, progressive MCI; sMCI, stable MCI; ACC, classification accuracy; SE,
classification sensitivity; SP, classification specificity.

Table 2 shows that with only the single-modality data,
FDG-PET achieved better performance for discrimi-
nation of MCI versus pMCI than florbetapir PET. In
combination with MRI, FDG-PET or florbetapir PET
improved prediction performance over that obtained
with MRI, FDG-PET, or florbetapir PET alone. The
weights for MRI + FDG-PET and MRI + florbetapir
PET were optimized by a grid search approach. For
discriminating MCI from NC, weights were set at
0.4 for MRI and 0.6 for FDG-PET for MRI + FDG-
PET and 0.4 for MRI and 0.6 for florbetapir PET
for MRI + florbetapir PET. For discriminating pMCI
from sMCI, weights were 0.2 for MRI and 0.8 for

FDG-PET for MRI + FDG-PET, and 0.4 for MRI
and 0.6 for florbetapir PET for MRI + florbetapir
PET. These weights suggest that combining
structural (i.e., MRI) and functional information (i.e.,
FDG-PET, florbetapir PET) improves the discrimi-
nation of MCI/pMCI. Further, the unequal weights
imply differential contributions when combining
modalities. In addition, for combinations involving
MRI, FDG-PET provides more benefit for accurate
discrimination of MCI/pMCI than florbetapir PET.
This may because at the region-level (i.e., explo-
rations of different brain regions), FDG-PET may
offer more information than florbetapir PET [40].
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Sensitive biomarkers

To choose sensitive biomarkers for the discrim-
ination of MCI from pMCI, multi-modal (MRI +
FDG-PET + florbetapir PET) and single-modality
(MRI, FDG-PET, and florbetapir PET) analyses were
performed using a different number of the ranked
features (from 1 to 90) from each modality. The
multi-modal analysis achieved better accuracy in dis-
criminating MCI from NC and predicting pMCI or
sMCI regardless of the number of ranked features
used. Moreover, Fig. 1a and 1b make clear that, for
the prediction of MCI/pMCI, the multi-modal results
were far superior to the single-modality results with
MRI, but only slightly better than those with flor-
betapir PET and FDG-PET, which further indicates
that functional abnormalities in the brain may pro-
vide more helpful information for the prediction of
MCI/pMCI than structural changes. When combining
the three modalities (MRI + FDG-PET + florbetapir
PET) in discriminating MCI from NC, the weight
parameters optimized by a grid search approach were
set to 0.4, 0.3, and 0.3 for MRI, FDG-PET, and
florbetapir PET, respectively. When discriminating
pMCI and sMCI in, the parameters were 0.1, 0.3, and
0.6, respectively. This suggests that the three modal-
ities contribute differently, depending on the specific
prediction, and may provide complementary con-
tributions to the discrimination/prediction. In short,
the combination of multi-modal information boosts
the performance of discriminating MCI/pMCI, which
has been reported in previous studies [20, 24]. Using
a random forest classifier to combine MRI, CSF, and
FDG-PET biomarkers, Gray et al. [20] achieved an
accuracy of 74.6% in discriminating MCI from NC,
which was better performance than single-modality
biomarkers (67.3% for MRI, 61.7% for CSF, and
53.5% for FDG-PET). In [24], Zhang and col-
leagues used a multi-kernel support vector machine
(mkSVM) to classify cases as MCI or NC. They found
that combining MRI, CSF, and FDG-PET biomarkers
achieved an accuracy of 76.4%, while the single-
modality biomarkers attained accuracies of 72.0%
(MRI), 71.4% (CSF), and 71.6% (FDG-PET). All
these studies showed the effectiveness of combining
biomarkers from multiple modalities.

Table 4 and Fig. 3 show that for the prediction of
MCI and pMCI, a small set of sensitive biomarkers
(the top 6% of ranked features) could achieve com-
parable or even better prediction performance than
using all 90 features. Such a phenomenon may sug-
gest that the complete set of brain regions (i.e., all 90

Fig. 3. The prediction accuracy for (a) MCI and (b) pMCI with
sensitive biomarkers as well as with all the 90 features.

features) includes redundant information, and using
all features may be not helpful and may interfere with
the prediction process. Thus, selecting a small set
of sensitive biomarkers may be necessary to make
predictions more effective.

As shown in Table 3 and Fig. 2, sensitive biomark-
ers were identified for predicting MCI and pMCI.
The middle temporal and inferior temporal regions
for MRI, and the posterior cingulum, precentral, and
postcentral regions for FDG-PET were shown to
be biomarkers for MCI and pMCI, indicating that
changes in these regions may occur primarily in the
progressive stage but not in the early (or stable) stage
of MCI, consistent with findings in previous studies
[7, 17, 41–44]. Additionally, several biomarkers facil-
itated discrimination of MCI from NC but not pMCI
from sMCI, such as the hippocampus and amygdala
for MRI, the angular and paracentral lobule for FDG-
PET, and the hippocampus, posterior cingulum gyrus,
and parahippocampal region for florbetapir PET. This
indicates that these changes may occur during the
progressive as well as the stable stage of MCI. Fur-
thermore, several other biomarkers may be helpful
for the recognition of pMCI, including the cuneus
for MRI, the superior parietal and middle tempo-
ral lobes for FDG-PET, and the amygdala, putamen,
superior frontal region, and thalamus for florbetapir
PET. Many of these biomarkers have been indicated
as significant in MCI patients in previous studies
[10, 17, 43, 45–50], and combining these biomark-
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ers could achieve effective predictions for MCI and
pMCI patients.

Despite these encouraging results, this study has
some limitations. First, only three imaging modal-
ities were investigated. Studies have indicated that
imaging data or information from other sources,
such as CSF, are also effective biomarkers for
MCI prediction. The current study was limited to
MRI, FDG-PET, and florbetapir PET because not all
participants had information from other modalities
available. Second, the modality-specific biomarkers
for MCI/pMCI obtained in this paper were only based
on the significance of the p-value obtained from the
two-sample t-tests; other feature selection methods
should be considered in future work.

Conclusion

For predicting MCI/pMCI converters, the current
study identified several modality-specific sensitive
biomarkers, such as the hippocampus, amygdala,
middle temporal, and inferior temporal lobes for
MRI, the posterior cingulum, precentral, and post-
central regions for FDG-PET, and the hippocampus,
amygdala, and putamen for florbetapir PET. Com-
bining these modality-specific biomarkers achieved
satisfactory prediction results for MCI/pMCI.
Further, the results suggested that FDG-PET may
contribute more to accurate prediction of MCI/pMCI
than florbetapir PET in region-level analyses. These
results offer new insights into our understanding of
patients with MCI/pMCI and may be important for
the accurate and timely diagnosis of MCI/pMCI;
future studies could usefully explore further these
findings.
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